Mobile Communications TCS 455

Dr. Prapun Suksompong prapun@siit.tu.ac.th Lecture 17

Office Hours: BKD 3601-7 Tuesday 14:00-16:00 Thursday 9:30-11:30

Announcements

- Read
 - Chapter 9: 9.1 9.5
- HW4 is posted.
 - Due at the beginning of the class on Tuesday (Jan 12).
- SIIT Job Fair 2010

SIIT Job Fair 2010

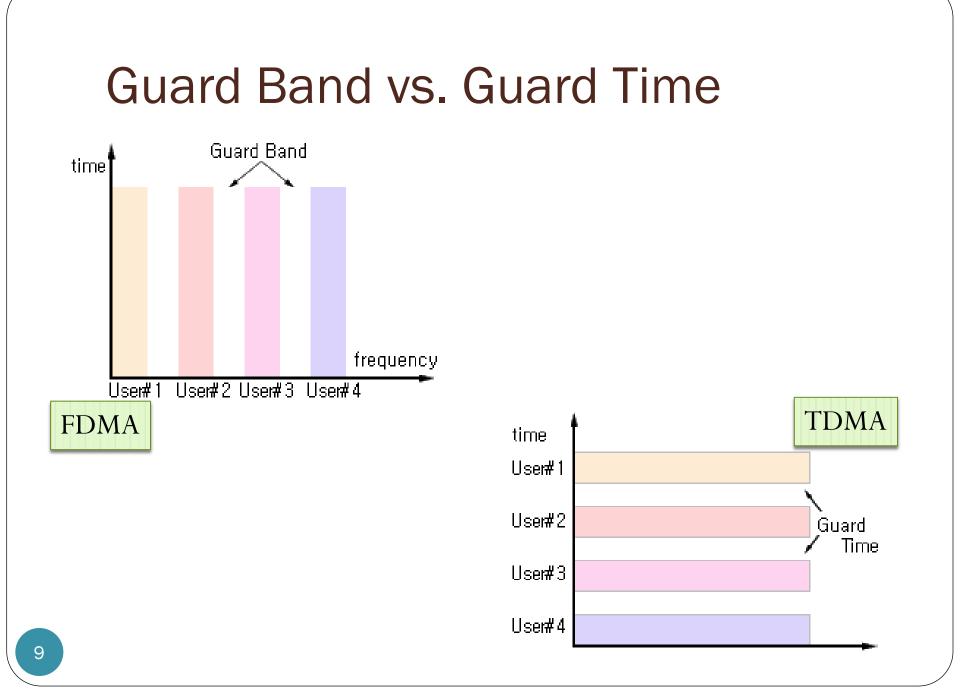
- Wednesday January 13
- Ground Floor & In front of UFM Bakery
- @ SIIT Main Building, Rangsit Campus
- Time: 9.00 16.00 hrs.
- Prepare several sets of
 - copy of transcript
 - resume
 - 1 inch photo

Chapter 4 Multiple Access

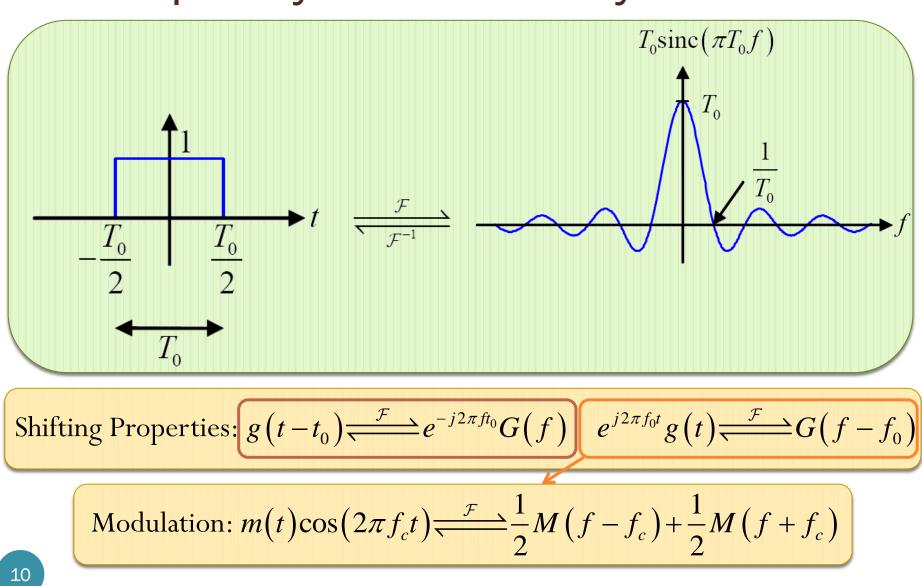
Office Hours: BKD 3601-7 Tuesday 14:00-16:00 Thursday 9:30-11:30

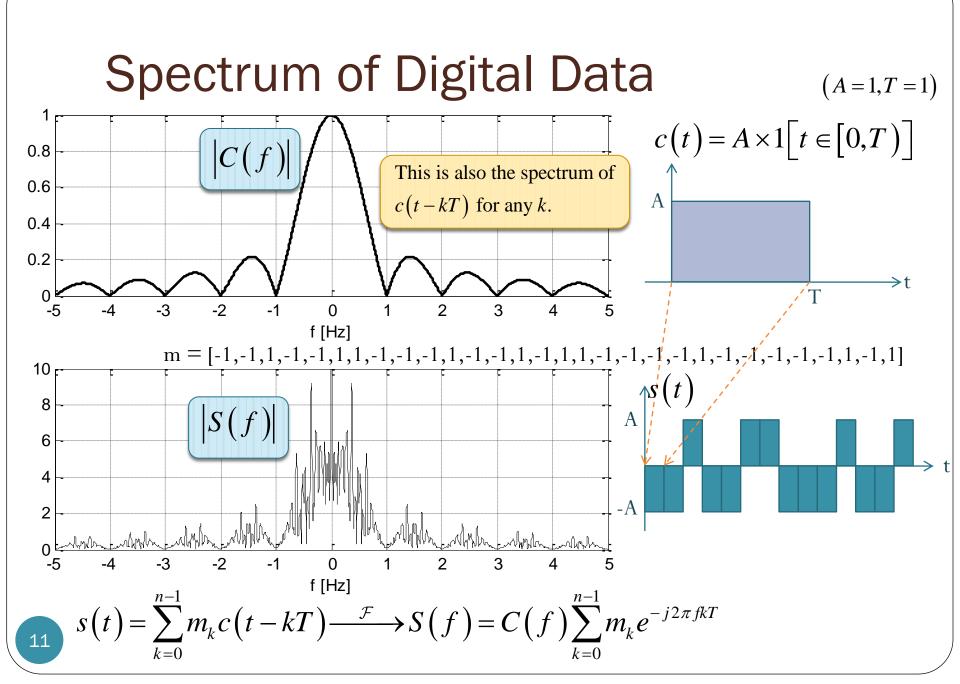
Last time:

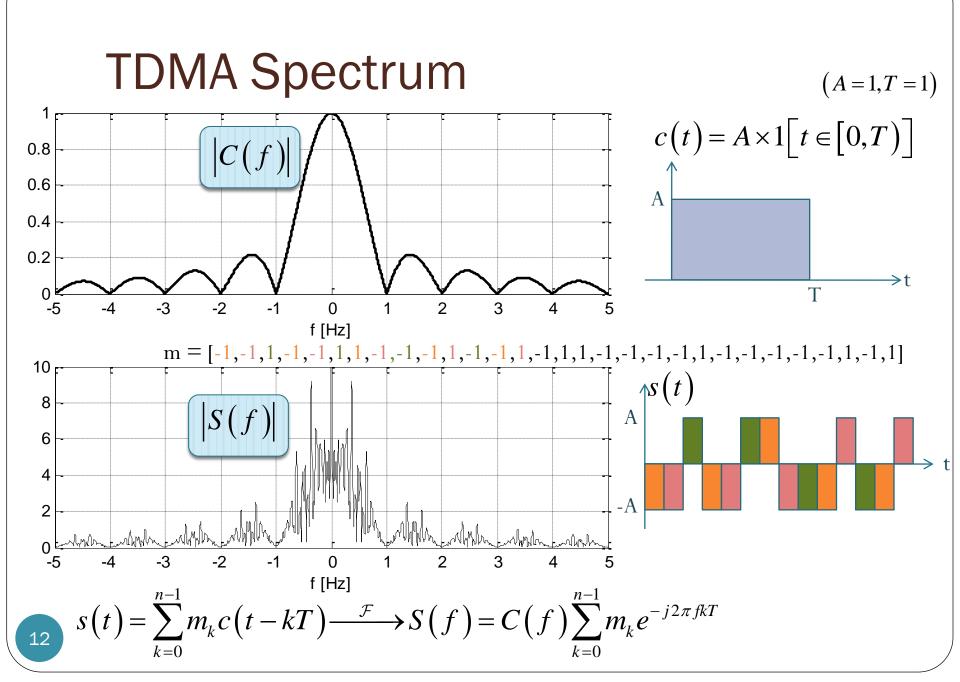
- Allocation of spectrum: Licensed vs. unlicensed
- Multiple Access: FDMA vs TDMA


Today

- Pop Quiz!
- Closed book. Closed notes. No calculator.
- Separate into groups of no more than three persons.


Parameter	Fixed WiMAX	Mobile WiMAX	HSPA	1x EV-DO Rev A	Wi-Fi
Standards	IEEE 802.16- 2004	IEEE 802.16e- 2005	3GPP Release 6	3GPP2	IEEE 802.11a/g/n
Peak down link data rate	9.4Mbps in 3.5MHz with 3:1 DL-to-UL ratio TDD; 6.1Mbps with 1:1	46Mbps ^a with 3:1 DL- to-UL ratio TDD; 32Mbps with 1:1	14.4Mbps using all 15 codes; 7.2Mbps with 10 codes	3.1Mbps; Rev. B will support 4.9Mbps	54 Mbps ^b shared using 802.11a/g; more than - 100Mbps peak layer 2 through- put using 802.11n
Peak uplink data rate	3.3Mbps in 3.5MHz using 3:1 DL-to-UL ratio; 6.5Mbps with 1:1	7Mbps in 10MHz using 3:1 DL-to-UL ratio; 4Mbps using 1:1	1.4Mbps ini- tially; 5.8Mbps later	1.8Mbps	
Bandwidth	3.5MHz and 7MHz in 3.5GHz band; 10MHz in 5.8GHz band	3.5MHz, 7MHz, 5MHz, 10MHz, and 8.75MHz initially	5MHz	1.25MHz	20MHz for 802.11a/g; 20/40MHz for 802.11n
Modulation	QPSK, 16 QAM, 64 QAM	QPSK, 16 QAM, 64 QAM	QPSK, 16 QAM	QPSK, 8 PSK, 16 QAM	BPSK, QPSK, 16 QAM, 64 QAM
Multiplexing	TDM	TDM/OFDMA	TDM/CDMA	TDM/ CDMA	CSMA
Duplexing	TDD, FDD	TDD initially	FDD	FDD	TDD
Frequency	3.5GHz and 5.8GHz initially	2.3GHz, 2.5GHz, and 3.5GHz initially	800/900/1,800/ 1,900/ 2,100MHz	800/900/ 1,800/ 1,900MHz	2.4GHz, 5GHz
Coverage (typical)	3–5 miles	< 2 miles	1–3 miles	1–3 miles	< 100 ft indoors; < 1000 ft outdoors
Mobility	Not applicable	Mid	High	High	Low

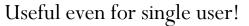

Multiple Access Techniques

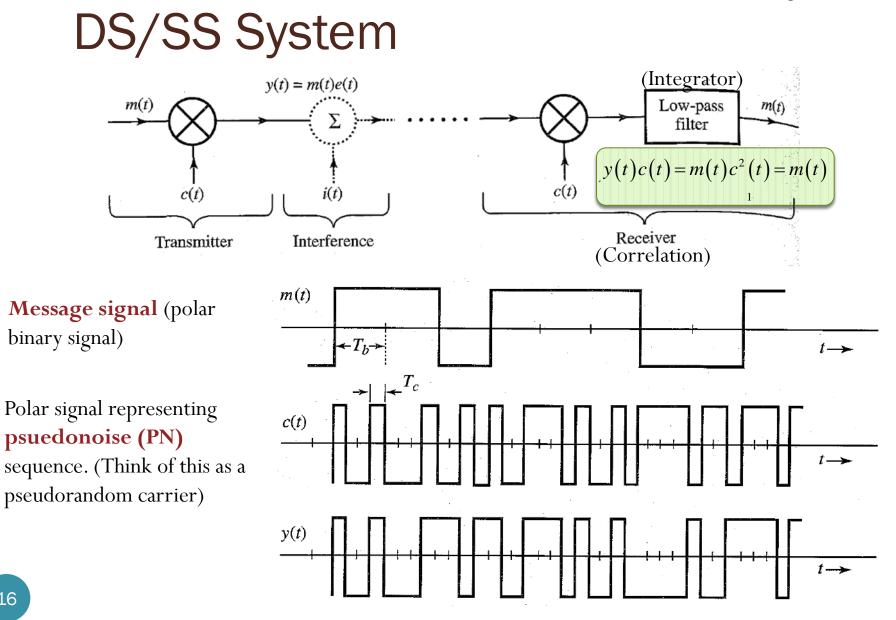

- Allow **many** mobile users to **share** simultaneously a finite amount of radio spectrum.
- For high quality communications, this must be done without severe degradation in the performance of the system.
- Important access techniques
 - 1. Frequency division multiple access (FDMA)
 - 2. Time division multiple access (TDMA)
 - 3. Spread spectrum multiple access (SSMA)
 - Frequency Hopped Multiple Access (FHMA)
 - Code division multiple access (CDMA)
 - 4. Space division multiple access (SDMA)
 - 5. Random access
 - ALOHA

Frequency-Domain Analysis

Spread spectrum multiple access (SSMA)

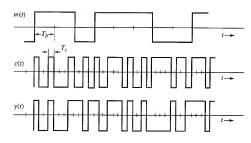
- Historically spread spectrum was developed for <u>secure</u> communication and <u>military</u> uses.
- Spread spectrum signals have the following characteristics:
 - **Difficult to intercept** for an unauthorized person.
 - Easily **hidden**. For an unauthorized person, it is difficult to even detect their presence in many cases.
 - Resistant to jamming.
 - Provide a measure of immunity to distortion due to multipath propagation.
 - Asynchronous multiple-access capability.

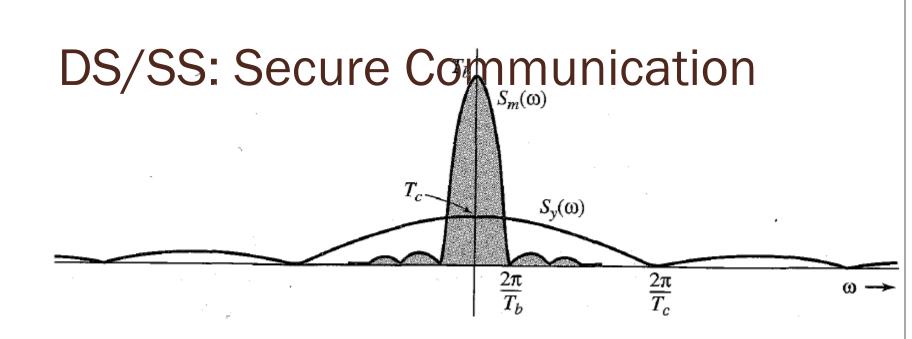

Spread spectrum conditions

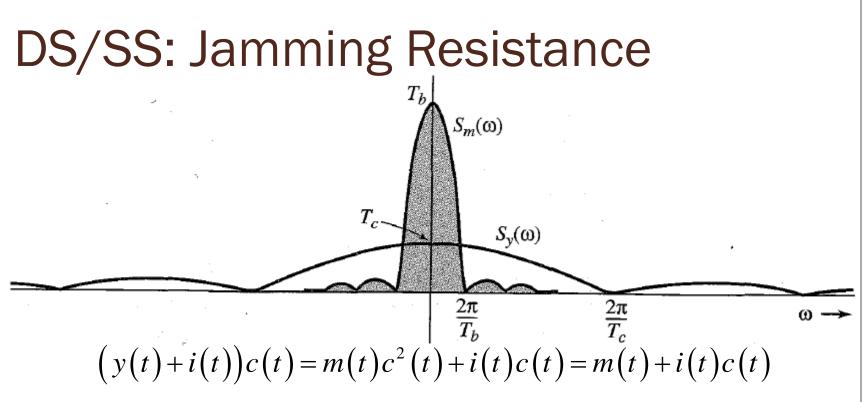

Spread spectrum refers to any system that satisfies the following conditions [Lathi, 1998, p 406]:

- The spread spectrum may be viewed as a kind of modulation scheme in which the modulated (spread spectrum) signal bandwidth is much greater than the message (baseband) signal bandwidth.
- 2. The **spectral spreading** is performed by a **code** that is **independent** of the message signal.
 - This same code is also used at the receiver to despread the received signal in order to recover the message signal (from the spread spectrum signal).
 - In secure communication, this code is known only to the person(s) for whom the message is intended.

Spread spectrum (2)

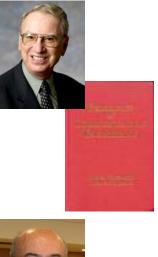

- The spread spectrum scheme increases the bandwidth of the message signal by a factor *N*, called the **processing gain**.
- Although we use much higher BW for a spread spectrum signal, we can also multiplex large numbers of such signals over the <u>same</u> band.
- Many users can share the same spread spectrum bandwidth without interfering with one another.
 - Achieved by assigning different code to each user.
 - Frequency bands can be reused without regard to the separation distance of the users.

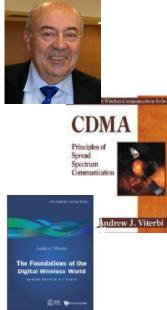



DS/SS

- The spectral spreading signal c(t) is a pseudorandom signal
 - Appear to be unpredictable
 - Can be generated by deterministic means (hence, pseudorandom)
- The bit rate of c(t) is chosen to be much higher then the bit rate of m(t).
- The basic pulse in c(t) is called the **chip**.
- The bit rate of c(t) is known as the **chip rate**.
- The auto correlation function of c(t) is very narrow.
 - Small similarity with its delayed version
- In multiuser (CDMA) setting, the crosscorrelation between any two codes c₁(t) and c₂(t) is very small
 - Negligible interference between various multiplexed signals.
- Notice that the process of detection (despreading) is identical to the process of spectral spreading.
 - Recall that for DSB-SC, we have a similar situation in that the modulation and demodulation processes are identical (except for the output filter).

- Secure communication
 - Signal can be detected only by authorized person(s) who know the pseudorandom code used at the transmitter.
 - Signal spectrum is spread over a very wide band, the signal PSD is very small, which makes it easier to hide the signal within the noise floor


- Jamming Resistance
 - The decoder despreads the signal y(t) to yield m(t).
 - The jamming signal i(t) is spread to yield i(t)c(t).
 - Using a LPF, can recover m(t) with only a small fraction of the power from i(t).
- Caution: Channel noise will not spread.


DS/SS: Multipath Fading Immunity

- The signal received from any undesired path is a delayed version of the DS/SS signal.
- DS/SS signal has a property of low autocorrelation (small similarity) with its delayed version, especially if the delay is of more than one chip duration.
- The delayed signal, looking more like an interfering signal, will not be despread by c(t) effectively minimizes the effect of the multipath signals.
- What is more interesting is that DSISS cannot only mitigate but may also exploit the multipath propagation effect.
 - This is accomplished by a **Rake receiver**.
 - This receive designed as to coherently combine the energy from several multipath components, which increases the received signal power and thus provides a form of diversity reception.
 - The rake receiver consists of a bank of correlation receivers, with each individual receiver correlating with a different arriving multipath component.
 - By adjusting the delays, the individual multipath components can be made to add coherently rather than destructively.

Code Division Multiple Access (CDMA)

- Qualcomm
- Founders: two of the most eminent engineers in the world of mobile radio
 - Irwin Jacobs is the chairman and founder
 - Andrew J. Viterbi is the co-founder
 - Same person that invented the Viterbi algorithm for decoding convolutionally encoded data.
- 1991: Qualcomm announced
 - that it had invented a new cellular system based on CDMA
 - that the capacity of this system was 20 or so times greater than any other cellular system in existence
- However, not all of the world was particularly pleased by this apparent breakthrough—in particular, GSM manufacturers became concerned that they would start to lose market share to this new system.
 - The result was continual and vociferous argument between Qualcomm and the GSM manufacturers.

CDMA

- SSMA
- Direct Sequence Spread Spectrum (DS/SS)
- All users use the same carrier frequency and may transmit simultaneously.
- Users are assigned different "signature waveforms" or "code" or "codeword" or "spreading signal"
- The narrowband message signal is multiplied (modulated) by the **spreading signal** which has a very large bandwidth (orders of magnitudes greater than the data rate of the message).
- Each user's codeword is *approximately orthogonal* to all other codewords.
- Should not be confused with the mobile phone standards called cdmaOne (Qualcomm's IS-95) and CDMA2000 (Qualcomm's IS-2000) (which are often referred to as simply "CDMA")
 - These standards use CDMA as an underlying channel access method.